Low alloy steel welded pipes buried in the earth were sent for failure analysis investigation. Failure of steel pipes was not due to tensile ductile overload but resulted from low ductility fracture in the region of the weld, which also contains multiple intergranular secondary cracks. The failure is most probably attributed to intergranular cracking initiating from the outer surface within the weld heat affected zone and propagated through the wall thickness. Random surface cracks or folds were found across the pipe. Sometimes cracks are emanating from the tip of such discontinuities. Chemical analysis, visual inspection, optical microscopy and SEM/EDS analysis were used as the principal analytical techniques for the failure investigation.

Low ductility fracture of PEX-AL-PEX pipe during service. ? Investigation of failure mechanism using macro- and microfractography. Metallographic evaluation of transverse sections near to the fracture area. ? Proof of multiple secondary cracks at the HAZ area following intergranular mode. ? Presence of Zn in the interior from the cracks manifested that HAZ sensitization and cracking occurred just before galvanizing process.

Galvanized steel tubes are used in lots of outdoors and indoors application, including hydraulic installations for central heating units, water supply for domestic and industrial use. Seamed galvanized tubes are fabricated by low alloy steel strip as being a raw material followed by resistance welding and hot dip galvanizing as the best manufacturing process route. Welded pipes were produced using resistance self-welding in the steel plate by using constant contact pressure for current flow. Successive pickling was realized in diluted HCl acid bath. Rinsing from the welded tube in degreasing and pickling baths for surface cleaning and activation is needed prior to hot dip galvanizing. Hot dip galvanizing is performed in molten Zn bath at a temperature of 450-500 °C approximately.

A series of failures of HDPE Pipe Welding Machine occurred after short-service period (approximately 1 year right after the installation) have led to leakage along with a costly repair of the installation, were submitted for root-cause investigation. The subject of the failure concerned underground (buried inside the earth-soil) pipes while faucet water was flowing in the tubes. Loading was typical for domestic pipelines working under low internal pressure of a few couple of bars. Cracking followed a longitudinal direction and it was noticed on the weld zone area, while no macroscopic plastic deformation (“swelling”) was observed. Failures occurred to isolated cases, with no other similar failures were reported in the same batch. Microstructural examination and fractographic evaluation using optical and scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (EDS) were mainly employed in the context in the present evaluation.

Various welded component failures attributed to fusion and heat affected zone (HAZ) weaknesses, such as cold and warm cracking, absence of penetration, lamellar tearing, slag entrapment, solidification cracking, gas porosity, etc. are reported within the relevant literature. Absence of fusion/penetration results in local peak stress conditions compromising the structural integrity in the assembly in the joint area, while the actual existence of weld porosity results in serious weakness in the fusion zone [3], [4]. Joining parameters and metal cleanliness are considered as critical factors for the structural integrity of the welded structures.

Chemical research into the fractured components was performed using standard optical emission spectrometry (OES). Low-magnification inspection of surface and fracture morphology was performed using a Nikon SMZ 1500 stereomicroscope. Microstructural and morphological characterization was conducted in mounted cross-sections. Wet grinding was performed using successive abrasive SiC papers up to #1200 grit, accompanied by fine polishing using diamond and silica suspensions. Microstructural observations completed after immersion etching in Nital 2% solution (2% nitric acid in ethanol) then ethanol cleaning and heat-stream drying.

Metallographic evaluation was performed using a Nikon Epiphot 300 inverted metallurgical microscope. Furthermore, high magnification observations in the microstructure and fracture topography were conducted to ultrasonically cleaned specimens, working with a FEI XL40 SFEG scanning electron microscope using secondary electron and back-scattered imaging modes for topographic and compositional evaluation. Energy dispersive X-ray spectroscopy employing an EDAX detector have also been employed to gold sputtered samples for qfsnvy elemental chemical analysis.

An agent sample from failed steel pipes was submitted for investigation. Both pipes experience macroscopically identical failure patterns. A characteristic macrograph of the representative fractured pipe (27 mm outer diameter × 3 mm wall thickness) is shown in Fig. 1. Since it is evident, crack is propagated for the longitudinal direction showing a straight pattern with linear steps. The crack progressed next to the weld zone in the weld, most probably after the heat affected zone (HAZ). Transverse sectioning of the tube resulted in opening of the through the wall crack and exposure of the fracture surfaces. Microfractographic investigation performed under SEM using backscattered electron imaging revealed a “molten” layer surface morphology which was brought on by the deep penetration and surface wetting by zinc, as it was identified by Multilayer pipe analysis. Zinc oxide or hydroxide was formed as a consequence of the exposure of zinc-coated cracked face to the working environment and humidity. The above findings and also the detection of zinc oxide on the on the fracture surface suggest strongly that cracking occurred prior to galvanizing process while no static tensile overload during service may be viewed as the main failure mechanism.

PERT-AL-PERT Pipe – More FAQ’s..

We are using cookies on our website

Please confirm, if you accept our tracking cookies. You can also decline the tracking, so you can continue to visit our website without any data sent to third party services.